Análisis de algoritmos

Programa Operativo

Dr. Rodrigo Vázquez López

Universidad Autónoma de la Ciudad de México Plantel Cuautepec

Semestre 2025-I

Objetivos

Que **al final del curso** el alumno sea capaz de comprender principios y técnicas generales del **diseño de algoritmos**. Analizará la **complejidad computacional** de diferentes algoritmos que resuelven un mismo problema con la finalidad de que adquiera las herramientas necesarias para diseñar algoritmos eficientes.

Información del curso

1 Información básica

Análisis de algoritmos					
Clave	Grupo	Horas teóricas	Horas prácticas		
1-CT-IS-04	1102	3	1.5		

1 Prerrequisitos

Estructura de datos. Adicionalmente, lo visto en Matemáticas discretas, Álgebra lineal, Cálculo diferencial, Cálculo integral y Programación orientada a objetos.

Horario

Lunes	Martes	Miércoles	Jueves	Viernes
	10:00 - 11:30 Lab Ciella	10:00 - 11:30 A-201	10:00 - 11:30 A-201	

Criterios de evaluación

Modalidades de evaluación

Tareas y programas	50%
3 Exámenes parciales	50%
Total	100%

- Se tomarán en cuenta las participaciones como puntos extras.
- Se toma asistencia a mitad de la clase. (No tiene valor en calificación)

AB Certificación

Información pendiente por parte de la coordinación.

Desarrollo del curso

Tareas

- Las tareas consisten en diversas actividades que deben entregar en la **fecha indicada**.
- Cada actividad indica la forma en que será entregada para su evaluación:
 - Las tareas que se entregan en formato físico deben realizarlas a mano utilizando hojas tamaño carta y se entregan engrapadas. Deben colocar su nombre completo (empezando por apellidos) y su matrícula en la parte superior derecha de la primer hoja.
 - Las tareas que se entregan vía electrónica deben enviarlas por correo electrónico en formato PDF.
- Durante las clases habrá actividades que deberán entregar para su evaluación.

Desarrollo del curso

Programas

- Los programas deben realizarlos en el lenguaje de programación indicado.
- Para la evaluación deben explicar y mostrar el funcionamiento del programa al profesor y entregar en classroom lo siguiente:
 - El código fuente comentado o un enlace a su repositorio para su consulta
 - Un documento corto en **formato PDF** que incluya lo siguiente:
 - Numero y nombre del programa, nombre completo del alumno y su matrícula.
 - Descripción del problema
 - Algoritmo de funcionamiento
 - Capturas de pantalla mostrando el funcionamiento.
 - Observaciones y conclusiones.
- NO se reciben códigos plagiados o generados con herramientas como Chat-GPT.

Fechas importantes

27 de enero	4 de Febrero	14 de Abril
Inicio de semestre	Inicio de curso	Inicio de la semana santa
18 de Abril	1 de Mayo	15 de Mayo
Fin de la semana santa	Día festiv <mark>o</mark> (no hay clases	Día festivo (no hay clases
20 de Mayo	23 de Mayo	Level 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Entrega de calificaciones finales	Fin del semestre	

Contenido del curso

Temas y subtemas		
1. Análisis de eficiencia de los algoritmos	1.1 Cotas inferiores y superiores 1.2 Complejidad promedio 1.3 Notación "O grande"	
2. Algoritmos aritméticos y algebraicos.	2.1 Complejidad en tiempo y en espacio 2.2 Problemas P, NP y NP-completos	
3. Algoritmos de búsqueda y ordenamiento	3.1 Búsqueda lineal y binaria 3.2 Ordenamiento directo: selección e inserción directas 3.3 Ordenamiento eficiente: shellsort y Quicksort	
4. Algoritmos de grafos	4.1 Representación en computadora 4.2 Obtención del número cromático 4.3 Árbol generador 4.4 Número de independencia	
5. Técnicas de diseño de algoritmos	5.1 Divide y vencerás 5.2 Algoritmos glotones (greedy) 5.4 Backtracking 5.5 Montecarlo	

Bibliografía utilizada

- [1] Sara Baase, Allen Van Gelder, and Roberto L Escalona García.

 **Algoritmos computacionales: Introducción al análisis y diseño. Pearson Educación, 2002.
- [2] Thomas H Cormen et al. Introduction to algorithms. MIT press, 2022.
- [3] María del Carmen Gomez Fuentes and Jorge Cervantes Ojeda. Introducción al análisis y al diseño de algoritmos. UAM, Unidad Cuajimalpa, División de Ciencias Naturales e Ingeniería, 2014.
- [4] Robert Sedgewick. *An introduction to the analysis of algorithms*. Pearson Education, 2013.

Reglas importantes

- Esta prohibida cualquier actividad que implique la deshonestidad académica (léase plagio, copiar durante el examen, etc.).
- Quien incumpla la regla anterior sera sancionado con una calificación de cero en la actividad en la que se detecto plagio. Quien reincida automáticamente tendrá como calificación final cero.
- Queda estrictamente prohibido grabar el contenido de la clase sin autorización del profesor.
- Se procurará mantener un ambiente de respeto entre todos los asistentes a la clase.

Contacto

Correo electrónico

Toda comunicación será únicamente por correo electrónico:

rodrigo.vazquez.lopez@uacm.edu.mx (Aún no está activo)

En el campo asunto coloquen **Algoritmos2025-I** en el comienzo del título del correo. Ejemplo:

Algoritmos2025-I Duda sobre la clase

Sólo contesto correos hasta las 21:00 y en días hábiles.

Asesorías presenciales

Se requiere un mínimo de 3 alumnos para poder impartir la asesoría presencial.

